《小白学数据挖掘与机器学习——SPSS Modeler案例篇》用生活中常见的例子、有趣的插图和通俗的语言,把看上去晦涩难懂的数据挖掘与机器学习知识以通俗易懂的方式分享给读者,让读者从入门学习阶段就发现,原来数据挖掘与机器学习不但有用,还很有趣。
《小白学数据挖掘与机器学习——SPSS Modeler案例篇》以IBM SPSS Modeler 作为案例实践工具,首先介绍了数据挖掘的基本概念及数据挖掘方法,然后介绍了IBM SPSS Modeler 工具的基本使用、数据探索、统计检验、回归分析、分类算法、聚类算法、关联规则、神经网络以及集成学习。每一章都会以漫画形式介绍一些日常小例子并作为切入点,用通俗的语言介绍具体的算法理论,同时在每章最后都附上应用案例,让读者更轻松地阅读《小白学数据挖掘与机器学习——SPSS Modeler案例篇》并掌握对应的算法和实践操作。
《小白学数据挖掘与机器学习——SPSS Modeler案例篇》内容循序渐进,完整覆盖了数据挖掘与机器学习的主要知识点,适合数据挖掘与机器学习入门读者阅读。
本书是机器学习入门书,以Python语言介绍。主要内容包括:机器学习的基本概念及其应用;实践中最常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的高级方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。
关于算法分析的这多卷论著已经长期被公认为经典计算机科学的定义性描述。迄今已出版的完整的三卷组成了程序设计理论和实践的惟一的珍贵源泉,无数读者都赞扬Knuth的著作对个人的深远影响。科学家们为他的分析的美丽和优雅所惊叹,而从事实践的程序员们已经成功地应用他的“菜谱式”的解到日常问题上,所有人都由于Knuth在书中所表现出的博学、清晰、精确和高度幽默而对他无比敬仰。
为开始后续各卷的写作并更新现有三卷中的部分内容,Knuth创立了称作册的一系列小部头的书,定期出版。每一册将包含一部分或多个部分的全新的或修订的内容。最终,这些册的内容将归并成每卷综合的最终版本,而在1962年开始的许多努力将得以完成。
本册主要讨论生成所有树,这个主题与《计算机程序设计艺术》前3卷有着令人吃惊的紧密联系。Knuth在本册中全面地讨论了这个著名的主题,提供了124个新的练习,继续为程序设计打下坚实的基础。同时,本册还论述了组合生成的历史。对几个文明古国及其他国家在这方面的历史进行了透彻的研究和精辟的分析。
《计算机程序设计艺术》(经典计算机科学著作最新版)(第1卷第1册双语版)更新了《计算机程序设计艺术,第1卷,基本算法》(第3版),并且最终将成为该书第4版的一部分。具体地说,它向程序员提供了盼望已久的MMIX,代替原来的MIX的一个以RISC为基础的计算机,并且描述了MMIX汇编语言。
本书是国际算法大师乌迪·曼博(Udi Manber)博士撰写的一本享有盛誉的著作。全书共分12章:第1章到第4章为介绍性内容,涉及数学归纳法、算法分析、数据结构等内容;第5章提出了与归纳证明进行类比的算法设计思想;第6章到第9章分别给出了4个领域的算法,如序列和集合的算法、图算法、几何算法、代数和数值算法;第10章涉及归约,也是第11章的序幕,而后者涉及NP完全问题;第12章则介绍了并行算法;最后是部分习题的答案及参考文献。本书的特色有二,旨在提高读者的问题求解能力,使读者能够理解算法设计的过程和思想:一是强调算法设计的创造性过程,注重算法设计背后的创造性思想,而不拘泥于某个具体算法的详细讨论;二是将算法设计类比于定理归纳证明,揭示了算法设计的基本思想和本质。
本书的组织结构清晰且易于理解,强调了创造性,具有浓郁特色,时至今日仍有其巨大的价值,并且适合作为计算机及相关专业算法和高级算法课程的教材。
计算机科学和经济学在过去的十多年中进行了热烈的交互,产生了新的算法博弈论领域。许多现代计算机科学的核心问题,从大型网络的资源分配到在线广告,都涉及多个自利方个体之间的相互作用。经济学和博弈论为这些问题提供了大量有用的模型和定义。同时,对于传统经济学的许多问题,来自计算机科学的研究又起到了补充作用。《斯坦福算法博弈论二十讲》源于作者在斯坦福大学的算法博弈论课程讲义,旨在让学生和其他新学者快速、方便地了解该领域的许多重要的概念。《斯坦福算法博弈论二十讲》通过在线广告、无线频谱交易和网络管理等案例来说明这些概念,非常适合课堂教授和自学。
本书是《Data Structures and Algorithm Analysis in C》一书第2版的简体中译本。原书曾被评为20世纪顶尖的30部计算机著作之一,作者Mark Allen Weiss在数据结构和算法分析方面卓有建树,他的数据结构和算法分析的著作尤其畅销,并受到广泛好评.已被世界500余所大学用作教材。
在本书中,作者更加精炼并强化了他对算法和数据结构方面创新的处理方法。通过C程序的实现,着重阐述了抽象数据类型的概念,并对算法的效率、性能和运行时间进行了分析。
全书特点如下:
●专用一章来讨论算法设计技巧,包括贪婪算法、分治算法、动态规划、随机化算法以及回溯算法
●介绍了当前流行的论题和新的数据结构,如斐波那契堆、斜堆、二项队列、跳跃表和伸展树
●安排一章专门讨论摊还分析,考查书中介绍的一些高级数据结构
●新开辟一章讨论高级数据结构以及它们的实现,其中包括红黑树、自顶向下伸展树。treap树、k-d树、配对堆以及其他相关内容
●合并了堆排序平均情况分析的一些新结果
本书是国外数据结构与算法分析方面的标准教材,介绍了数据结构(大量数据的组织方法)以及算法分析(算法运行时间的估算)。本书的编写目标是同时讲授好的程序设计和算法分析技巧,使读者可以开发出具有最高效率的程序。 本书可作为高级数据结构课程或研究生一年级算法分析课程的教材,使用本书需具有一些中级程序设计知识,还需要离散数学的一些背景知识。
在有关算法的书中,有一些叙述非常严谨,但不够全面;另一些涉及了大量的题材,但又缺乏严谨性。本书将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受。全书各章自成体系,可以作为独立的学习单元;算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂;说明和解释力求浅显易懂,不失深度和数学严谨性。
全书选材经典、内容丰富、结构合理、逻辑清晰,对本科生的数据结构课程和研究生的算法课程都是非常实用的教材,在IT专业人员的职业生涯中,本书也是一本案头必备的参考书或工程实践手册。
第3版的主要变化:
新增了van Emde Boas树和多线程算法,并且将矩阵基础移至附录。
修订了递归式(现在称为“分治策略”)那一章的内容,更广泛地覆盖分治法。
移除两章很少讲授的内容:二项堆和排序网络。
修订了动态规划和贪心算法相关内容。
流网络相关材料现在基于边上的全部流。
由于关于矩阵基础和Strassen算法的材料移到了其他章,矩阵运算这一章的内容所占篇幅更小。
修改了对Knuth-Morris-Pratt字符串匹配算法的讨论。
新增100道练习和28道思考题,还更新并补充了参考文献。
本书作为算法领域经典的参考书,全面介绍了关于算法和数据结构的必备知识,并特别针对排序、搜索、图处理和字符串处理进行了论述。第4版具体给出了每位程序员应知应会的50个算法,提供了实际代码,而且这些 Java 代码实现采用了模块化的编程风格,读者可以方便地加以改造。配套网站 algs4.cs.princeton.edu 提供了本书内容摘要以及相关代码、测试数据、编程练习、教学课件等资源。
《剑指Offer——名企面试官精讲典型编程题(纪念版)》是为纪念本书英文版全球发行而推出的特殊版本,在原版基础上新增大量本书英文版中的精选题目,系统整理基础知识、代码质量、解题思路、优化效率和综合能力这5个面试要点。全书分为8章,主要包括面试流程:讨论面试每一环节需要注意的问题;面试需要的基础知识:从编程语言、数据结构及算法三方面总结程序员面试知识点;高质量代码:讨论影响代码质量的3个要素(规范性、完整性和鲁棒性),强调高质量代码除完成基本功能外,还能考虑特殊情况并对非法输入进行合理处理;解题思路:总结编程面试中解决难题的有效思考模式,如在面试中遇到复杂难题,应聘者可利用画图、举例和分解这3种方法将其化繁为简,先形成清晰思路再动手编程;优化时间和空间效率:读者将学会优化时间效率及空间换时间的常用算法,从而在面试中找到最优解;面试必备能力:总结应聘者如何充分表现学习和沟通能力,并通过具体面试题讨论如何培养知识迁移、抽象建模和发散思维能力;综合面试案例:总结哪些面试举动是不良行为,而哪些表现又是面试官所期待的行为;英文版面试题增补,优选久经欧美知名企业面试考验的经典题目,帮助国内读者开阔视野、增补技能。
《剑指Offer——名企面试官精讲典型编程题(纪念版)》适合即将走向工作岗位的大学生阅读,也适合作为正在应聘软件行业的相关就业人员和计算机爱好者的参考书。
本书是国内外业界广泛关注的7卷本《计算机程序设计艺术》第2卷的最新版。本卷对半数值算法领域做了全面介绍,分“随机数”和“算术”两章。本卷总结了主要算法范例及这些算法的基本理论,广泛剖析了计算机程序设计与数值分析间的相互联系,其中特别值得注意的是作者对随机数生成程序的重新处理和对形式幂级数计算的讨论。 本书附有大量习题和答案,标明了难易程度及数学概念的使用。 本书内容精辟,语言流畅,引人入胜,可供从事计算机科学、计算数学、计算技术诸方面的工作人员参考、研究和借鉴,也是相关专业高等院校的理想教材和教学参考书。
7卷本《计算机程序设计艺术》的第1卷以基本的程序设计概念和技术开始,然后专注于信息结构——计算机内部信息的表示、数据元素之间的结构关系以及如何有效地处理它们,给出了对于模拟、数值方法、符号计算、软件和系统设计的初等应用。书中附有大量习题和答案,标明了难易程序及数学概念的使用。
此新版本增加了几十项简单且重要的算法和技术,并对有关数学预备知识作了大量修改以适应现时研究的趋势。
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。本书配套示例源代码、PPT课件。
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch 2.0深度学习环境搭建、从零开始学习PyTorch 2.0、深度学习基础算法详解、基于PyTorch卷积层的MNIST分类实战、PyTorch数据处理与模型展示、ResNet实战、有趣的词嵌入、基于PyTorch循环神经网络的中文情感分类实战、自然语言处理的编码器、预训练模型BERT、自然语言处理的解码器、强化学习实战、只具有解码器的GPT-2模型、实战训练自己的ChatGPT、开源大模型ChatGLM使用详解、ChatGLM高级定制化应用实战、对ChatGLM进行高级微调。
《从零开始大模型开发与微调:基于PyTorch与ChatGLM》适合PyTorch深度学习初学者、大模型开发初学者、大模型开发人员学习,也适合高等院校人工智能、智能科学与技术、数据科学与大数据技术、计算机科学与技术等专业的师生作为教学参考书。
王晓华,高校计算机专业讲师,研究方向为云计算、大数据与人工智能。著有《PyTorch 2.0深度学习从零开始学》《Python机器学习与可视化分析实战》《谷歌JAX深度学习从零开始学》《Spark 3.0大数据分析与挖掘:基于机器学习》《TensorFlow深度学习应用实践》《OpenCV+TensorFlow深度学习与计算机视觉实战》《TensorFlow知识图谱实战》《TensorFlow人脸识别实战》《TensorFlow语音识别实战》《TensorFlow+Keras自然语言处理实战》《TensorFlow 2.0卷积神经网络实战》《Keras实战:基于TensorFlow2.2的深度学习实践》《TensorFlow 2.0深度学习从零开始学》《深度学习的数学原理与实现》。
本书从数学、哲学、计算机科学、神经科学和人工智能等角度,全面阐述了贝叶斯理论背后的基础知识、思维方式和丰富哲理。贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。作者一改传统的数学探讨模式,不仅展现了贝叶斯理论背后的科学思想,还阐述了它与人类思维之间的深刻关系,并对各相关领域和人工智能的发展进行了展望。本书适合喜爱数学、算法、机器学习、人工智能、逻辑学和哲学的大众读者,读者无须过多数学和算法知识就能读懂。
《从机器学习到深度学习:基于scikit-learn与TensorFlow的高效开发实战》是一本场景式的机器学习实践书,笔者努力做到“授人以渔,而非授人以鱼”。理论方面从人工智能(AI)与机器学习(ML)的基本要素讲起,逐步展开有监督学习、无监督学习、强化学习这三大类模型的应用场景与算法原理;实践方面通过金融预测、医疗诊断概率模型、月球登陆器、图像识别、写诗机器人、中国象棋博弈等案例启发读者将机器学习应用在各行各业里,其中后三个案例使用了深度学习技术。
《从机器学习到深度学习:基于scikit-learn与TensorFlow的高效开发实战》试图用通俗的语言讲解涵盖算法模型的机器学习,主要内容包括机器学习通用概念、三个基本科学计算工具、有监督学习、聚类模型、降维模型、隐马尔可夫模型、贝叶斯网络、自然语言处理、深度学习、强化学习、模型迁移等。在深入浅出地解析模型与算法之后,介绍使用Python相关工具进行开发的方法、解析经典案例,使读者做到“能理解、能设计、能编码、能调试”,没有任何专业基础的读者在学习本书后也能够上手设计与开发机器学习产品。
《从机器学习到深度学习:基于scikit-learn与TensorFlow的高效开发实战》内容深入浅出、实例典型,适合对机器学习感兴趣的产品设计、技术管理、数据分析、软件开发或学生读者。阅读本书既能了解当前工业界的主流机器学习与深度学习开发工具的使用方法,又能从战略方面掌握如何将人工智能技术应用到自己的企业与产品中。
本书对计算机科学方面的数理逻辑进行了综合介绍,涵盖命题逻辑、谓词逻辑、模态逻辑与代理、二叉判定图、模型检测和程序验证等内容。本书主要讨论有关软硬件规范和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法、L6wenheim—Skolem定理等,并介绍了Alloy语言和NuSMV工具等内容。
本书适宜作为高等院校计算机及相关专业的数理逻辑/形式化方法课程的教材,也可供相关研究人员和专业人士参考。
本书是一部设计与分析领域的经典著作,着重介绍了计算机算法设计领域的基本原则和根本原理。书中深入分析了一些计算机模型上的算法,介绍了一些和设计有效算法有关的数据结构和编程技术,为读者提供了有关递归方法、分治方法和动态规划方面的详细实例和实际应用,并致力于更有效算法的设计和开发。同时,对NP完全等问题能否有效求解进行了分析,并探索了应用启发式算法解决问题的途径。另外,本书还提供了大量富有指导意义的习题。
本书可以作为高等院校计算机算法设计与分析课程的本科生或研究生教材,也可以作为计算机理论研究人员、计算机算法设计人员的参考书。
本书展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。
本书可作为计算机专业 本科生、研究生 教材,也可作为相关领域研究人员、教师的参考书。
本书在介绍算法时,重点介绍用干设计算法的策略.非常与众不同。书中介绍了剪枝搜索、分摊分析、随机算法、在线算法以及多项式近似方案等相对较新的思想和众多基于分摊分析新开发的算法,每个算法都与实例一起加以介绍,而且每个例子都利用图进行详细解释。此外,本书还提供了超过400幅图来帮助初学者理解。本书适合作为高等院校算法设计与分析课程的高年级本科生和低年级研究生的教材,也可供相美科技人员和专业人七参考使用。
《C++编程思想(第2卷)(实用编程技术)》介绍C++实用的编程技术和最佳的实践方法,深入探究了异常处理方法和异常安全设计;介绍C++的字符串、输入输出流、STL算法、容器和模板的现代用法,包括模板元编程;解释多重继承问题的难点,展示RTTI的实际使用,描述了典型的设计模式及其实现,特别介绍被认为是标准C++下一版特征之一的多线程处理编程技术,并提供了最新的研究成果。《C++编程思想》(第2卷)适合作为高等院校计算机及相关专业的本科生、研究生的教材,也可供从事软件开发的研究人员和科技工作者参考。
海报:
《算法:C语言实现(第1-4部分)基础知识、数据结构、排序及搜索(原书第3版)》细腻讲解计算机算法的C语言实现。全书分为四部分,共16章。包括基本算法分析原理,基本数据结构、抽象数据结构、递归和树等数据结构知识,选择排序、插入排序、冒泡排序、希尔排序、快速排序方法、归并和归并排序方法、优先队列与堆排序方法、基数排序方法以及特殊用途的排序方法,并比较了各种排序方法的性能特征,在进一步讲解符号表、树等抽象数据类型的基础上,重点讨论散列方法、基数搜索以及外部搜索方法。书中提供了用C语言描述的完整算法源程序,并且配有丰富的插图和练习,还包含大量简洁的实现将理论和实践成功地相结合,这些实现均可用在真实应用上。
《算法:C语言实现(第1-4部分)基础知识、数据结构、排序及搜索(原书第3版)》内容丰富,具有很强的实用价值,适合作为高等院校计算机及相关专业本科生算法课程的教材,也是广大研究人员的极佳参考读物。
“这本书是越来越多的信息检索文献里的一本好书”
——Donald H. Kraft,计算机评论
“学术巨匠齐聚一堂编撰了一部信息检索的优秀教材。Stefan Bu ̈ttcher、Charles Clarke和Gordon Cormack以合计超过五十年的研究经验,组成了横跨三代的信息检索研究泰斗组合……这本书是所有信息检索研究者和从业人员的必读教材!”
——来自由Amit Singhal撰写的序言
信息检索奠定了现代搜索引擎的基石。本书介绍了现代搜索技术的核心主题,包括了算法、数据结构、索引、检索和评价。重点在于实现和实验;每一章都有练习和对学生项目的建议。Wumpus——本书其中一位作者开发的一个多用户开源信息检索系统,可以在网上下载——提供了模型实现,可作为学生练习的一个基础。本书采用的模块化结构使教师可以将此书用于不同水平的研究生课程中,包括从数据库系统角度教授的课程、专注于理论的传统信息检索课程和关于Web检索基础的课程。
对信息检索的基础进行介绍之后,本书分别在相应的部分介绍了3个重要主题——索引、检索和评价。本书的最后一部分借用并扩展了前面部分的基本内容,考虑了以下具体应用:并行搜索引擎、Web搜索和XML检索。每章末尾的参考文献给出了延伸阅读;练习包括纸笔练习题和重大编程项目。除了用于课堂教学,本书对计算机科学、计算机工程和软件工程的专业人员来说也具有很好的参考价值。
机器学习的目标是对计算机编程,以便使用样本数据或以往的经验来解决给定的问题。已经有许多机器学习的成功应用,包括分析以往销售数据来预测客户行为,优化机器人的行为以便使用较少的资源来完成任务,以及从生物信息数据中提取知识的各种系统。本书是关于机器学习的内容全面的教科书,其中有些内容在一般的在机器学习导论书中很少介绍。主要内容包括监督学习,贝叶斯决策理论,参数、半参数和非参数方法,多元分析,隐马尔可夫模型,增强学习,核机器,图模型,贝叶斯估计和统计检验。
机器学习正在迅速成为计算机科学专业的学生必须掌握的一门技能。本书第3版反映了这种变化,增加了对初学者的支持,包括给出了部分习题的参考答案和补充了实例数据集(提供在线代码)。其他显著的变化包括离群点检测的讨论、感知器和支持向量机的排名算法、矩阵分解和谱方法、距离估计、新的核算法、多层感知器的深度学习和非参数贝叶斯方法。书中对所有学习算法都进行了解释,以便读者可以很容易地将书中的公式转变为计算机程序。本书可以用作高年级本科生和硕士研究生的教材,也可供研究机器学习方法的技术人员参考。
《多处理器编程的艺术》从原理和实践两个方面全面阐述了多处理器编程的指导原则,包含编制高效的多处理器程序所必备的算法技术。此外,附录提供了采用其他程序设计语言包(如C#、C及C++的PThreads库)进行编程的相关背景知识以及硬件基础知识。《多处理器编程的艺术》适合作为高等院校计算机及相关专业高年级本科生及研究生的教材,同时也可作为相关技术人员的参考书。
目前,多处理器的编程技术受到广泛关注,多处理器编程要求理解新型计算原理、算法及编程工具;至今很少有人能够精通这门编程艺术。
现今,大多数工程技术人员都是通过艰辛的反复实践、求助有经验的朋友来学习多处理器编程技巧。这本最新的权威著作致力于改变这种状况,作者全面阐述了多处理器编程的指导原则,介绍了编制高效的多处理器程序所必备的算法技术。《多处理器编程的艺术》所涵盖的多处理器编程关键问题将使在校学生以及相关技术人员受益匪浅。
神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络与机器学习》)。在本书中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。
本书不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题的应用。本书的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。
本版在前一版的基础上进行了广泛修订,提供了神经网络和机器学习这两个越来越重要的学科的最新分析。
本书特色:
1. 基于随机梯度下降的在线学习算法;小规模和大规模学习问题。
2. 核方法,包括支持向量机和表达定理。
3. 信息论学习模型,包括连接、独立分量分析(ICA)、一致独立分量分析和信息瓶颈。
4. 随机动态规划,包括逼近和神经动态规划。
5. 逐次状态估计算法,包括卡尔曼和粒子滤波器。
6. 利用逐次状态估计算法训练递归神经网络。
7. 富有洞察力的面向计算机的试验。
工业界称为多核的多处理器机器正迅速地渗入计算的各个领域。多处理器编程要求理解新型计算原理、算法及编程工具,至今很少有人能够精通这门编程艺术。
现今,大多数工程技术人员都是通过艰辛的反复实践、求助有经验的朋友来学习多处理器编程技巧。这本最新的权威著作致力于改变这种状况,作者全面阐述了多处理器编程的指导原则,介绍了编制高效的多处理器程序所必备的算法技术。了解本书所涵盖的多处理器编程关键问题将使在校学生以及相关技术人员受益匪浅。
本书特色
本修订版结合2008年第1版出版以来课堂教学和读者反馈的勘误和修改意见,对全书进行了多方面的修订和更新。
循序渐进地讲述共享存储器多线程编程的基础知识。
详细解释当今多处理器硬件对并发程序设计的支持方式。
全面考察主流的并发数据结构及其关键设计要素。
从简单的锁机制到最新的事务内存系统,独立、完整地阐述了同步技术。
给出大量利用Java并发工具包编写的可完全执行的Java实例。
附录提供了采用其他程序设计语言和包(如C#、C及C++的Pthreads库)进行编程的相关背景知识以及硬件基础知识。
......我所读过的关于密码学最好的书......该书是美国国家安全局最不愿意见到出版的书......
—— 《Wired》
......不朽的......令人着迷的......计算机程序员必读的密码学上决定性的著作......
—— 《Dr.Dobb's Journal》
......该领域勿庸置疑的一本权威之作。
—— 《PC Magazine》
......编码高手的圣经。
—— The Millennium Whole Earth Catalog
密码学的应用领域远远不只是编码和解码信息,要了解有关密码学技术的数字签名的知识,本书是必读之作。本书介绍了密码学协议的通用类型、特定技术,详细介绍了现实世界密码学算法的内部机制,包括DES和RSA公开密钥加密系统。书中提供了源代码列表和大量密码学应用方面的实践活动,如产 生真正的随机数和保持密钥安全的重要性。
全书共分四个部分,定义了密码学的多个术语,介绍了密码学的发展及背景,描述了密码学从简单到复杂的各种协议,详细讨论了密码技术。并在此基础上列举了如DES、IDEA、RSA、DSA等十多个算法以及多个应用实例,并提供了算法的源代码清单。
全书内容广博权威,具有极大的实用价值,是致力于密码学研究的专业及非专业人员一本难得的好书。
本书系统介绍计算机安全领域中的各个方面,不但包括相关的技术和应用方面的内容,同时还包括管理方面的内容。全书覆盖IEEE/ACM计算机科学教学大纲中核心内容的所有相关主题,可以用作CISSP认证考试的准备材料,还包括计算机安全、技术和理论、软件安全、管理问题、密码算法、因特网安全等内容的深入讨论
本书以通俗、直观的方式清晰阐述了现代密码学的基础知识,包括用来实现通信隐私性/机密性的保密算法(协议)及保证消息正确性、完整性、来源可靠性的数字签名协议,提供了一个易读、易学的关于现代密码学基本原理和数学知识的导引,通过浅显的例子和生动的语言让读者绕过晦涩的专业术语而直接看到密码技术的本质。
本书叙述清晰,简单易懂,适合作为高等院校计算机及相关专业本科生教材。
Robert Sedgewick完全重写了他的著作,对它进行了充分的扩展和更新,涵盖了目前重要的算法和数据结构。Christopher Van Wyk和Sedgewick开发的新实现采用的是C++语言,这种实现不仅能够直接地表达算法,而且给编程者提供了实践的方法,以便在真正的应用中测试这些算法。 新的版本提供了很多新算法,而且对每个算法的解释也比以前的版本详细很多。新的版面设计以及详细、富有创意并且具有注释的插图,使本书的表达能力大大地提高了。第三版保留了将理论和实践成功混合在一些的特点,正是这一点,使Sedgewick的著作成为25万多名程序员无价的参考资源。 本书是全卷的前半部分,涵盖了基本的数据结构、排序算法、搜索算法以及它们的相关应用。虽然本书实质上可以用于各种语言的程序设计,Christopher Van Wyk和Sedgewick的实现都采用了C++类和ADT实现的自然对应。
这是一本程序员面试宝典!书中对IT名企代码面试各类题目的最优解进行了总结,并提供了相关代码实现。针对当前程序员面试缺乏权威题目汇总这一痛点,本书选取将近200道真实出现过的经典代码面试题,帮助广大程序员的面试准备做到万无一失。“刷”完本书后,你就是“题王”!__eol__本书采用题目+解答的方式组织内容,并把面试题类型相近或者解法相近的题目尽量放在一起,读者在学习本书时很容易看出面试题解法之间的联系,使知识的学习避免碎片化。书中将所有的面试题从难到易依次分为“将、校、尉、士”四个档次,方便读者有针对性地选择“刷”题。本书所收录的所有面试题都给出了最优解讲解和代码实现,并且提供了一些普通解法和最优解法的运行时间对比,让读者真切地感受到最优解的魅力!__eol__本书中的题目全面且经典,更重要的是,书中收录了大量独家题目和最优解分析,这些内容源自笔者多年来“死磕自己”的深入思考。__eol__码农们,你们做好准备在IT名企的面试中脱颖而出、一举成名了吗?这本书就是你应该拥有的“神兵利器”。当然,对需要提升算法和数据结构等方面能力的程序员而言,本书的价值也是显而易见的。
本书通过扎实、详细的内容和清晰的结构,从算法理论、算法源码、实验结果等方面对深度学习算法进行分析和介绍。本书共三篇,第一篇主要介绍深度学习在计算机视觉方向的一些卷积神经网络,从基础骨干网络、轻量级 CNN、模型架构搜索 3 个方向展开,介绍计算机视觉方向的里程碑算法;第二篇主要介绍深度学习在自然语言处理方向的重要突破,包括基础序列模型和模型预训练;第三篇主要介绍深度学习在模型优化上的进展,包括模型优化方法。
通过阅读本书,读者可以深入理解主流的深度学习基础算法,搭建起自己的知识体系,领会算法的本质,学习模型优化方法。无论是从事深度学习科研的教师及学生,还是从事算法落地实践的工作人员,都能从本书中获益。
算法设计,ISBN:9787302143352,作者:(美)克林伯格(Kleinberg,J.),()塔多斯(Tardos,E.) 著,张立昂,屈婉玲 译
作者基于丰富的教学经验,开发了一套全新的算法分类方法。该分类法站在通用问题求解策略的高度,对现有大多数算法准确分类,从而引领读者沿着一条清晰、一致、连贯的思路来探索算法设计与分析这一迷人领域。
本书作为第3版,相对前版调整了多个章节的内容和顺序,同时增加了一些算法,并扩展了算法的应用,使得具体算法和通用算法设计技术的对应更加清晰有序;各章累计增加了70道习题,其中包括一些有趣的谜题和面试问题。
本书十分适合用作算法设计和分析的基础教材,也适合任何有兴趣探究算法奥秘的读者使用,只要读者具备数据结构和离散数学的知识即可。
人工智能领域正在以超乎人们想象的速度发展,本书赶在人工智能彻底占领世界之前完成编写,实属万幸。
书中收录了超过100道机器学习算法工程师的面试题目和解答,其中大部分源于Hulu算法研究岗位的真实场景。本书从日常工作、生活中各种有趣的现象出发,不仅囊括了机器学习的基本知识 ,而且还包含了成为出众算法工程师的相关技能,更重要的是凝聚了笔者对人工智能领域的一颗热忱之心,旨在培养读者发现问题、解决问题、扩展问题的能力,建立对机器学习的热爱,共绘人工智能世界的宏伟蓝图。
“不积跬步,无以至千里”,本书将从特征工程、模型评估、降维等经典机器学习领域出发,构建一个算法工程师必-备的知识体系;见神经网络、强化学习、生成对抗网络等新科研进展之微,知深度学习领域胜败兴衰之著;“博观而约取,厚积而薄发”,在末一章为读者展示生活中各种引领时代的人工智能应用。
《MySQL技术内幕:InnoDB存储引擎(第2版)》由国内资深MySQL专家亲自执笔,国内外多位数据库专家联袂推荐。作为国内唯一一本关于InnoDB的专著,《MySQL技术内幕:InnoDB存储引擎(第2版)》的第1版广受好评,第2版不仅针对最新的MySQL 5.6对相关内容进行了全面的补充,还根据广大读者的反馈意见对第1版中存在的不足进行了完善,《MySQL技术内幕:InnoDB存储引擎(第2版)》大约重写了50%的内容。《MySQL技术内幕:InnoDB存储引擎(第2版)》从源代码的角度深度解析了InnoDB的体系结构、实现原理、工作机制,并给出了大量最佳实践,能帮助你系统而深入地掌握InnoDB,更重要的是,它能为你设计管理高性能、高可用的数据库系统提供绝佳的指导。
《MySQL技术内幕:InnoDB存储引擎(第2版)》一共10章,首先宏观地介绍了MySQL的体系结构和各种常见的存储引擎以及它们之间的比较;接着以InnoDB的内部实现为切入点,逐一详细讲解了InnoDB存储引擎内部的各个功能模块的实现原理,包括InnoDB存储引擎的体系结构、内存中的数据结构、基于InnoDB存储引擎的表和页的物理存储、索引与算法、文件、锁、事务、备份与恢复,以及InnoDB的性能调优等重要的知识;最后对InnoDB存储引擎源代码的编译和调试做了介绍,对大家阅读和理解InnoDB的源代码有重要的指导意义。
《MySQL技术内幕:InnoDB存储引擎(第2版)》适合所有希望构建和管理高性能、高可用性的MySQL数据库系统的开发者和DBA阅读。
《算法竞赛入门经典(第2版)》是一本算法竞赛的入门与提高教材,把C/C++语言、算法和解题有机地结合在一起,淡化理论,注重学习方法和实践技巧。全书内容分为12 章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、C++与STL入门、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法、高级专题等内容,覆盖了算法竞赛入门和提高所需的主要知识点,并含有大量例题和习题。书中的代码规范、简洁、易懂,不仅能帮助读者理解算法原理,还能教会读者很多实用的编程技巧;书中包含的各种开发、测试和调试技巧也是传统的语言、算法类书籍中难以见到的。
《算法竞赛入门经典(第2版)》可作为全国青少年信息学奥林匹克联赛(NOIP)复赛教材、全国青少年信息学奥林匹克竞赛(NOI)和ACM国际大学生程序设计竞赛(ACM/ICPC)的训练资料,也可作为IT工程师与科研人员的参考用书。
《算法竞赛入门经典》是一本算法竞赛的入门教材,把C/C++语言、算法和解题有机地结合在了一起,淡化理论,注重学习方法和实践技巧。全书内容分为11章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、基础题目选解、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法,覆盖了算法竞赛入门所需的主要知识点,并附有大量习题。书中的代码规范、简洁、易懂,不仅能帮助读者理解算法原理,还能教会读者很多实用的编程技巧。另外,书中包含的各种开发、测试和调试技巧也是在传统的语言、算法类书籍中难以见到的。
《算法竞赛入门经典》可作为全国青少年信息学奥林匹克联赛(NOIP)的复赛教材及ACM国际大学。
第一部分 开始解决问题
第二部分 算法分析
第三部分 算法设计范式
第四部分 一些著名的算法
第五部分 基本数据结构
第六部分 树
第七部分 图
在本书中,作者给我们带来了一大批极为诱人的知识,其中包括各种节省程序运行时间的技巧、算法与窍门。学习了这些技术,程序员就可写出优雅高效的软件,同时还能洞悉其中原理。这些技术极为实用,而且其问题本身又非常有趣,有时甚至像猜谜解谜一般,需要奇思妙想才行。简而言之,软件开发者看到这些改进程序效率的妙计之后,定然大喜。
《剑指Offer:名企面试官精讲典型编程题(第2版)》剖析了80个典型的编程面试题,系统整理基础知识、代码质量、解题思路、优化效率和综合能力这5个面试要点。《剑指Offer:名企面试官精讲典型编程题(第2版)》共分7章,主要包括面试的流程,讨论面试每一环节需要注意的问题;面试需要的基础知识,从编程语言、数据结构及算法三方面总结程序员面试知识点;高质量的代码,讨论影响代码质量的3个要素(规范性、完整性和鲁棒性),强调高质量代码除完成基本功能外,还能考虑特殊情况并对非法输入进行合理处理;解决面试题的思路,总结编程面试中解决难题的有效思考模式,如在面试中遇到复杂难题,应聘者可利用画图、举例和分解这3种方法将其化繁为简,先形成清晰思路,再动手编程;优化时间和空间效率,读者将学会优化时间效率及用空间换时间的常用算法,从而在面试中找到最优解;面试中的各项能力,总结应聘者如何充分表现学习和沟通能力,并通过具体面试题讨论如何培养知识迁移、抽象建模和发散思维能力;两个面试案例,总结哪些面试举动是不良行为,而哪些表现又是面试官所期待的行为。
《算法之美——隐匿在数据结构背后的原理(C++版)》围绕算法与数据结构这个话题,循序渐进、深入浅出地介绍了现代计算机技术中常用的40 余个经典算法,以及回溯法、分治法、贪婪法和动态规划等算法设计思想。在此过程中,《算法之美——隐匿在数据结构背后的原理(C++版)》也系统地讲解了链表(包括单向链表、单向循环链表和双向循环链表)、栈、队列(包括普通队列和优先级队列)、树(包括二叉树、哈夫曼树、堆、红黑树、AVL 树和字典树)、图、集合(包括不相交集)与字典等常用数据结构。同时,通过对22 个经典问题(包括约瑟夫环问题、汉诺塔问题、八皇后问题和骑士周游问题等)的讲解,逐步揭开隐匿在数据结构背后的算法原理,力图帮助读者夯实知识储备,激活思维技巧,并最终冲破阻碍编程能力提升的重重藩篱。
《算法之美——隐匿在数据结构背后的原理(C++版)》适合作为大专院校相关专业学生研习算法与数据结构知识的课外参考书。对有意参加信息学竞赛的读者,本书亦有很强的参考价值。此外,鉴于算法与数据结构在求职过程中常常被视为考察重点,所以就临近毕业的学生或其他欲从事IT 行业的求职者而言,阅读《算法之美——隐匿在数据结构背后的原理(C++版)》也将对面试备考大有裨益。
历史上最伟大的计算机科学著作之一
融深邃思想、实战技术与趣味轶事于一炉的奇书
带你真正领略计算机科学之美
多年以来,当程序员们推选出最心爱的计算机图书时,《编程珠玑》总是位于前列。正如自然界里珍珠出自细沙对牡蛎的磨砺,计算机科学大师Jon Bentley以其独有的洞察力和创造力,从磨砺程序员的实际问题中凝结出一篇篇不朽的编程“珠玑”,成为世界计算机界名刊《ACM通讯》历史上最受欢迎的专栏,最终结集为两部不朽的计算机科学经典名著,影响和激励着一代又一代程序员和计算机科学工作者。本书为第一卷,主要讨论计算机科学中最本质的问题:如何正确选择和高效地实现算法。
在书中,作者选取许多具有典型意义的复杂编程和算法问题,生动描绘了历史上众大师们在探索解决方案中发生的轶事、走过的弯路和不断精益求精的历程,引导读者像真正的程序员和软件工程师那样富于创新性地思考,并透彻阐述和总结了许多独特而精妙的设计原则、思考和解决问题的方法以及实用程序设计技巧。解决方案的代码均以C/C++语言编写,不仅有趣,而且有很大的实战示范意义。每章后所附习题极具挑战性和启发性,书末给出了简洁的解答。
本书是计算机科学方面的经典名著。书的内容围绕程序设计人员面对的一系列实际问题展开。作者Jon Bentley 以其独有的洞察力和创造力,引导读者理解这些问题并学会解决方法,而这些正是程序员实际编程生涯中至关重要的。本书的特色是通过一些精心设计的有趣而又颇具指导意义的程序,对实用程序设计技巧及基本设计原则进行了透彻而睿智的描述,为复杂的编程问题提供了清晰而完备的解决思路。本书对各个层次的程序员都具有很高的阅读价值。
书评
“《编程珠玑》是对我职业生涯早期影响最大的书之一,其中的许多真知灼见多年之后仍然使我受益匪浅。”
——Steve McConnell,软件工程大师,IEEE Software前主编,《代码大全》作者
本书示例丰富,图文并茂,以让人容易理解的方式阐释了算法,旨在帮助程序员在日常项目中更好地发挥算法的能量。书中的前三章将帮助你打下基础,带你学习二分查找、大O表示法、两种基本的数据结构以及递归等。余下的篇幅将主要介绍应用广泛的算法,具体内容包括:面对具体问题时的解决技巧,比如,何时采用贪婪算法或动态规划;散列表的应用;图算法;K最近邻算法。
算法已在多大程度上影响我们的生活?
购物网站用算法来为你推荐商品,点评网站用算法来帮你选择餐馆,GPS系统用算法来帮你选择最佳路线,公司用算法来选择求职者……
当机器最终学会如何学习时,将会发生什么?
不同于传统算法,现在悄然主导我们生活的是“能够学习的机器”,它们通过学习我们琐碎的数据,来执行任务;它们甚至在我们还没提出要求,就能完成我们想做的事。
什么是终极算法?
机器学习五大学派,每个学派都有自己的主算法,能帮助人们解决特定的问题。而如果整合所有这些算法的优点,就有可能找到一种“终极算法”,该算法可以获得过去、现在和未来的所有知识,这也必将创造新的人类文明。
你为什么必须了解终极算法?
不论你身处什么行业、做什么工作,了解终极算法都将带给你崭新的科学世界观,预测以后的科技发展,布局未来,占位未来!
如今,机器学习正在互联网上下掀起热潮,而Python则是非常适合开发机器学习系统的一门优秀语言。作为动态语言,它支持快速探索和实验,并且针对Python的机器学习算法库的数量也与日俱增。本书最大的特色,就是结合实例分析教会读者如何通过机器学习解决实际问题。
本书将向读者展示如何从原始数据中发现模式,首先从Python与机器学习的关系讲起,再介绍一些库,然后就开始基于数据集进行比较正式的项目开发了,涉及建模、推荐及改进,以及声音与图像处理。通过流行的开源库,我们可以掌握如何高效处理文本、图片和声音。同时,读者也能掌握如何评估、比较和选择适用的机器学习技术。
举几个例子,我们会介绍怎么把StackOverflow的回答按质量高低进行分类,怎么知道某个音乐文件是爵士风格,还是重金属摇滚风格。另外,本书还涵盖了主题建模、购物习性分析及云计算等高级内容。总之,通过学习本书,读者可以掌握构建自己所需系统的各方面知识,并且学以致用,解决自己面临的现实问题。
读者只要具有一定的Python编程经验,能够自己安装和使用开源库,就足够了,即使对机器学习一点了解都没有也没关系。本书不会讲机器学习算法背后的数学。
政府数字化转型是大势所趋,数字政府建设关乎数字经济发展促进力,并受到各级政府、企业和广大民众的关注。
数字政府2.0的目标是实现从“数字”到“数智”的跨越。“数字”阶段的主要任务是利用互联网、物联网的技术和入口构建人、物、内容和服务的连接能力,将政务服务方便触达更多人群,是政府数字化转型的起点。而“数智”阶段的主要任务是利用大数据、云计算、人工智能等新一代信息技术构建数据智能的运用能力,依托数据的实时共享,利用人工智能算法提供决策支撑和精准化的治理能力,是政府数字化转型的的基础和关键。
本书全面公开阿里巴巴服务数字政府的实践,专注于帮助该领域的所有参与者,在数字经济的大背景下,围绕数据化、网络化和智能化,利用数据共享和智能算法提升跨层级、跨地域、跨系统、跨部门、跨业务的协同管理水平和服务供给能力。
机器学习正在迅速改变我们的世界。我们几乎每天都会读到机器学习如何改变日常的生活。如果你在淘宝或者京东这样的电子商务网站购买商品,或者在爱奇艺或是腾讯视频这样的视频网站观看节目,甚至只是进行一次百度搜索,就已经触碰到了机器学习的应用。使用这些服务的用户会产生数据,这些数据会被收集,在进行预处理之后用来训练模型,而模型会通过这些数据来提供更好的用户体验。此外,目前还有很多使用机器学习技术的产品或服务即将在我们的生活当中普及,如能够解放双手的无人驾驶汽车、聪明伶俐的智能家居产品、善解人意的导购机器人等。可以说要想深入机器学习的应用开发当中,现在就是一个非常理想的时机。
本书内容涵盖了有监督学习、无监督学习、模型优化、自然语言处理等机器学习领域所必须掌握的知识,从内容结构上非常注重知识的实用性和可操作性。全书采用由浅入深、循序渐进的讲授方式,完全遵循和尊重初学者对机器学习知识的认知规律。本书适合有一定程序设计语言和算法基础的读者学习使用。
本书每章都设计了案例研究,以机器学习算法为主线,结合实例探讨了Spark 的实际应用。书中没有让人抓狂的数据公式,而是从准备和正确认识数据开始讲起,全面涵盖了推荐系统、回归、聚类、降维等经典的机器学习算法及其实际应用。
本书着重介绍现代密码学的加密思想及其实现方法,内容涉及数论、概率论、抽象代数、加密算法的思想及复杂度理论。本书介绍了密码学的历史沿革,剖析了古典的加密算法为何会被现代的加密算法所取代,展望了密码编码领域的发展,为古典和现代密码体系提供了数学理论基础,还给出了一些针对各种加密算法的密码分析方法。 本书适合作为高校计算机安全与信息安全专业密码学导论的简明教材,也可供对密码学、数论和计算机数论有兴趣的技术人员参考。
本书系统介绍并行程序设计原理及应用。除介绍常用的一些算法范例,包括分治、流水、同步计算、主从及工作池,还介绍了一些常用的经典数值和非数值算法,如排序、矩阵相乘、线性方程组求解、图像处理中的预处理和相应的变换、搜索和优化等。第2版新增了机群计算等使用机群的内容,对如何打造专用和通用的机群以及设置相应的程序设计环境做了较为详尽的介绍。章后包含大量习题,其中现实生活习题非常实用,既可增强学习兴趣,又可提高并行程序设计技巧。
本书可作为高等院校计算机专业高年级本科生或研究生的教材,对从事高性能计算的科技工作者也是一本很有价值的参考书。
本站基于Calibre构建,感谢开源界的力量。所有资源搜集于互联网,如有侵权请邮件联系。
Github | Docker | Project
《小白学数据挖掘与机器学习——SPSS Modeler案例篇》用生活中常见的例子、有趣的插图和通俗的语言,把看上去晦涩难懂的数据挖掘与机器学习知识以通俗易懂的方式分享给读者,让读者从入门学习阶段就发现,原来数据挖掘与机器学习不但有用,还很有趣。
《小白学数据挖掘与机器学习——SPSS Modeler案例篇》以IBM SPSS Modeler 作为案例实践工具,首先介绍了数据挖掘的基本概念及数据挖掘方法,然后介绍了IBM SPSS Modeler 工具的基本使用、数据探索、统计检验、回归分析、分类算法、聚类算法、关联规则、神经网络以及集成学习。每一章都会以漫画形式介绍一些日常小例子并作为切入点,用通俗的语言介绍具体的算法理论,同时在每章最后都附上应用案例,让读者更轻松地阅读《小白学数据挖掘与机器学习——SPSS Modeler案例篇》并掌握对应的算法和实践操作。
《小白学数据挖掘与机器学习——SPSS Modeler案例篇》内容循序渐进,完整覆盖了数据挖掘与机器学习的主要知识点,适合数据挖掘与机器学习入门读者阅读。