随便推荐

新书推荐

一本书读懂AIGC:ChatGPT、AI绘画、智能文明与生产力变革

内容简介

《一本书读懂AIGC:ChatGPT、AI绘画、智能文明与生产力变革》以通俗易懂的方式从各个层面介绍了AIGC的基础知识,并辅以大量案例引领读者了解AIGC的应用实践,让读者可以更快速地利用AIGC改善工作和生活。 第1章从AI发展历史到资本市场近况阐述了AIGC产业的概况,第2章介绍了AIGC相关技术,第3章介绍了文本类AIGC技术的发展及其在传媒、教育、办公等场景中的应用,第4章介绍了声音类AIGC技术的发展及其在音乐、仿真等领域中的应用,第5章介绍了图片类AIGC技术的发展及其在图片生成、图片处理、图片识别等领域中的应用,第6章介绍了视频类AIGC技术的发展及其在视频生成、数字人等领域中的应用,第7章介绍了AIGC上下游产业链(包括芯片、VR等相关设备、元宇宙建模)的概况,第8章提出了AIGC对人类文明发展产生的影响,并对普通人如何应对AIGC带来的“生产力爆炸”提出方法论。 AIGC带来的生产力变革与每个人都息息相关,本书适合所有人阅读,特别是文本、图片、音视频等各类内容创作者,以及科技行业、金融行业的从业者和对AI领域感兴趣的读者。

作者简介

贾雪丽
上海技术交易所专家库专家,代尔夫特理工大学硕士,先后就职于 ING 银行、中国平安、光大集团等顶级金融科技企业,拥有丰富的人工智能、隐私计算及区块链等项目经验,申请人工智能相关发明专利 60 余项,在INTERSPEECH会议上发表论文一篇,参与撰写多个隐私计算行业报告和白皮书。
0xAres
利物浦大学硕士,曾先在投资公司工作,后就职于知名公链。从业期间主持制作过多个区块链系列课程,举办过多次“黑客松”,长期致力于区块链的科普教育,有Web3.0行业全领域孵化经验,乐于通过多种形式的内容创作传播Web3.0共识;2021年组建去创作者中心化组织a15a并开始编写新科技领域的科普书籍,主编了《一本书读懂Web3.0:区块链、NFT、元宇宙和DAO》和《一本书读懂NFT:区块链通证、元宇宙资产、Web3.0营销和数字化身份》。
张炯
星图比特创始人兼CEO,中国通信工业协会信息化科技创新专业委员会委员,上海技术交易所专家库专家;曾就职于IBM,拥有丰富的金融科技从业经验,长期服务中国人民银行、中国工商银行等大型金融机构,擅长技术融合、产业创新,对以区块链、人工智能为代表的数字经济技术有深刻的理解;拥有人工智能和数字资产相关专利8项,参与撰写了《一本书读懂Web3.0:区块链、NFT、元宇宙和DAO》和《一本书读懂NFT:区块链通证、元宇宙资产、Web3.0营销和数字化身份》。
a15a
a15a是一个Creator DAO(创作者去中心化组织),致力于以DAO的形式来产出新科技领域的内容,降低普通人了解科技的门槛。a15a已出版多本新科技科普书籍,并计划推出更多体系化课程和讲座。a15a的主要成员是区块链和人工智能领域的专家、从业者、研究人员和学生,以及法律合规领域的专业人士。在抖音、知乎、小红书、推特等平台上搜索“a15a”即可找到a15a官方账号。

目录

  • 第1章 我们为什么要关注AIGC 1
    • 1.1 从人工智能到人工智能生成内容 2
    • 1.2 巨头如是说 5
      • 1.2.1 国外“大厂”在AIGC领域的布局 5
      • 1.2.2 国内“大厂”在AIGC领域的布局 7
    • 1.3 资本狂潮 9
      • 1.3.1 融资规模 9
      • 1.3.2 AIGC领域大额融资事件一览 10
    • 1.4 异军突起的独角兽企业们 11
      • 14.1 OpenAI 11
      • 14.2 Stability AI 12
      • 1.4.3 Scale AI 13
    • 1.5 行业“大牛”:谁是下一个“乔布斯” 14
  • 第2章 AIGC相关技术介绍 16
    • 2.1 规则系统 19
    • 2.2 变分自编码器 20
    • 2.3 生成对抗网络 22
      • 2.3.1 GAN模型训练原理 22
      • 2.3.2 CGAN模型 24
      • 2.3.3 基于模型架构的衍生 24
      • 2.3.4 基于损失函数的衍生 25
      • 2.3.5 图像生成领域的衍生 25
    • 2.4 Transformer模型架构 26
    • 2.5 基于Transformer模型架构的LLM 28
      • 2.5.1 基于编码器的LLM 28
      • 2.5.2 基于解码器的LLM 35
      • 2.5.3 基于编码器和解码器的LLM 39
      • 2.5.4 BERT模型与GPT模型对比 39
    • 2.6 扩散模型 40
      • 2.6.1 扩散模型原理 41
      • 2.6.2 DALL·E 2模型 43
      • 2.6.3 Stable Diffusion模型 44
    • 2.7 其他模型 46
    • 2.8 LLM的前景光明 47
  • 第3章 下笔如有神:文本类AIGC 48
    • 3.1 何为“智能” 49
    • 3.2 拆解文本生成技术原理 52
      • 3.2.1 1950—1970年,NLP初露锋芒 52
      • 3.2.2 1980—2010年,NLP的寒冬与机遇并存 53
      • 3.2.3 2010—2019年,技术迸发与沉淀 54
      • 3.2.4 2019年到今,AIGC进入寻常百姓家 54
    • 3.3 文本类AIGC在传媒场景中的应用 55
      • 3.3.1 社交媒体文案:Jasper 55
      • 3.3.2 新闻写作:Quakebot、CNET 58
      • 3.3.3 剧本撰写:海马轻帆 58
    • 3.4 文本类AIGC在教育场景中的应用 59
      • 3.4.1 文章撰写:EssayGenuis 59
      • 3.4.2 出题和做题:高校联合团队开发的AI程序 65
      • 3.4.3 青少年教育:Cognii 65
    • 3.5 文本类AIGC在办公场景中的应用 66
      • 3.5.1 搜索引擎优化:Kafkai 66
      • 3.5.2 营销文案:Copysmith 68
      • 3.5.3 电子邮件:Compose.ai 69
      • 3.5.4 代码撰写:GitHub Copilot 69
    • 3.6 文本类AIGC的其他热门场景 71
      • 3.6.1 AI聊天机器人 71
      • 3.6.2 AIGC搜索引擎:Perplexity AI 73
    • 3.7 万众瞩目的ChatGPT 74
      • 3.7.1 ChatGPT是什么 74
      • 3.7.2 ChatGPT的海量应用场景 75
      • 3.7.3 GPT-4模型:截至2023年3月最强的AI模型 82
      • 3.7.4 ChatGPT对普通人意味着什么 85
    • 3.8 文本类AIGC的未来 85
  • 第4章 声临其境:声音类AIGC 88
    • 4.1 从让机器开口说话开始 89
      • 4.1.1 18到19世纪的尝试 89
      • 4.1.2 20世纪30年代,语音合成技术的萌芽 90
      • 4.1.3 20世纪50年代,计算机语音合成系统的起源 91
      • 4.1.4 20世纪末,传统的语音合成方法 92
      • 4.1.5 2016年,AIGC打破语音合成技术的发展瓶颈 93
      • 4.1.6 2017年,语音合成技术迎来研究热 94
    • 4.2 音乐类AIGC 99
      • 4.2.1 从留声机到个人计算机制作的电子音乐 99
      • 4.2.2 早期的音乐类AIGC 102
      • 4.2.3 端到端模型大展身手 106
      • 4.2.4 歌声合成 107
      • 4.2.5 音频延续 108
    • 4.3 人声类AIGC 108
      • 4.3.1 变声器 109
      • 4.3.2 语音助手 110
      • 4.3.3 有声内容创作 113
      • 4.3.4 智能电话机器人 116
      • 4.3.5 教育 116
      • 4.3.6 无障碍沟通 118
    • 4.4 声音类AIGC的未来 120
      • 4.4.1 业内观点 120
      • 4.4.2 声音类AIGC的局限性和未来展望 121
  • 第5章 如你所见:图片类AIGC 123
    • 5.1 从计算机艺术到算法模型艺术 124
      • 5.1.1 20世纪70年代,艺术家的午夜花园 125
      • 5.1.2 2012年,一次有突破意义的尝试:猫脸的识别与生成 125
      • 5.1.3 2014年,GAN模型问世 126
      • 5.1.4 2017年,梦始于Transformer模型 127
      • 5.1.5 2021年,文本与图片进行匹配:CLIP模型和文字提示词 127
      • 5.1.6 2020—2022年,图片生成技术开启AI绘画元年:扩散模型 129
    • 5.2 AI绘画 130
      • 5.2.1 主流的AI绘画工具介绍 130
      • 5.2.2 生成图片类AIGC的方式 133
      • 5.2.3 Prompt词组 137
    • 5.3 图片处理 146
      • 5.3.1 AI修图 146
      • 5.3.2 图片增强 146
      • 5.3.3 分割抠图 147
    • 5.4 图片类AIGC的衍生应用:AI识图和AI鉴图 152
      • 5.4.1 人脸和人体识别 153
      • 5.4.2 通用图片识别 155
      • 5.4.3 是否由AI绘画工具创作 158
    • 5.5 实用、有趣的图片世界 160
      • 5.5.1 头像生成 160
      • 5.5.2 模拟场景 164
      • 5.5.3 PPT生成 168
      • 5.5.4 设计 170
      • 5.5.5 稿件配图 173
      • 5.5.6 更多场景 174
    • 5.6 图片类AIGC的未来 175
      • 5.6.1 局限性和发展预测 175
      • 5.6.2 怎么看AI艺术 178
      • 5.6.3 笔者的一些浅见 180
  • 第6章 众所周知,视频是不能PS的:视频类AIGC 182
    • 6.1 视频生成技术的发展历程 183
      • 6.1.1 早期探索 184
      • 6.1.2 2014—2016年,视频生成起步:无条件视频生成 184
      • 6.1.3 2017年,潘多拉的魔盒:人像视频生成 185
      • 6.1.4 2018—2019年,视频生成视频技术的突破 185
      • 6.1.5 2021年,文本生成视频技术的发展 186
      • 6.1.6 2022年,扩散模型进军视频生成领域 187
    • 6.2 视频生成工具 188
      • 6.2.1 数字人视频生成工具 188
      • 6.2.2 视频编辑工具 189
      • 6.2.3 文本生成视频工具 189
    • 6.3 视频生成应用 190
      • 6.3.1 高清内容生成 190
      • 6.3.2 快速拆条和视频摘要生成 194
      • 6.3.3 场景植入 195
      • 6.3.4 视频卡通化 196
      • 6.3.5 文本生成视频 197
      • 6.3.6 数字人视频生成 198
      • 6.3.7 人脸视频生成 199
    • 6.4 数字人:仿生人与电子羊 201
    • 6.5 视频类AIGC的未来 204
      • 6.5.1 局限性 204
      • 6.5.2 未来预测 205
  • 第7章 AIGC的相关产业和生态发展 207
    • 7.1 芯片:算力决定智力 208
      • 7.1.1 在AIGC领域中,现在用什么芯片 209
      • 7.1.2 随着AIGC的发展,对芯片会有什么新的需求 216
    • 7.2 AIGC展示端口:AR/VR/MR/XR设备 218
      • 7.2.1 AR设备 218
      • 7.2.2 VR设备 219
    • 7.3 模型类AIGC应用在元宇宙里自动化建模 221
      • 7.3.1 拍视频就可以得到模型?基于视频自动化生成模型 222
      • 7.3.2 元宇宙版的神笔马良,基于文本自动化生成三维模型 223
      • 7.3.3 穿越空间,虚拟直播空间建设 224
      • 7.3.4 你元宇宙的化身——数字人生成技术 225
      • 7.3.5 把实物带到元宇宙中,基于三维激光扫描设备的文物逆向建模 226
    • 7.4 AIGC应用的未来 226
  • 第8章 AI文明的降临已开启倒计时 228
    • 8.1 何谓内容 229
    • 8.2 AIGC的版权争议 230
    • 8.3 普通人的AIGC时代生存建议 232
      • 8.3.1 生产力工具:“人工”+“智能”=最强“打工人” 234
      • 8.3.2 做AIGC应用的老师,为人类的“群体智慧”做贡献 237
      • 8.3.3 向AIGC应用学习逻辑,同时关注创新 237
    • 后记 239

动手学PyTorch建模与应用:从深度学习到大模型

内容简介  · · · · · ·

《动手学PyTorch建模与应用:从深度学习到大模型》是一本从零基础上手深度学习和大模型的PyTorch实战指南。《动手学PyTorch建模与应用:从深度学习到大模型》共11章,第1章主要介绍深度学习的概念、应用场景及开发环境搭建。第2章详细介绍PyTorch数学基础,包括函数、微分、数理统计、矩阵等基础知识及其案例。第3章介绍数据预处理及常用工具,包括NumPy、Pandas、Matplotlib、数据清洗、特征工程以及深度学习解决问题的一般步骤等。第4章介绍PyTorch基础知识,包括张量的创建、激活函数、损失函数、优化器等。第5章介绍PyTorch深度神经网络,包括神经网络概述、卷积神经网络、循环神经网络等。第6章介绍PyTorch数据建模,包括回归分析、聚类分析、主成分分析、模型评估与调优等。第7~10章介绍PyTorch图像建模、文本建模、音频建模和模型可视化。第11章介绍大语言模型的原理、主要的大语言模型及模型本地化部署、预训练与微调技术。本书还精心设计了50个动手案例和上机练习题,并对所有代码进行了详尽注释和说明,同时提供数据集和配书资源文件,以帮助读者更好地使用本书。 《动手学PyTorch建模与应用:从深度学习到大模型》讲解深入浅出,注重动手实操,特别适合想学习AI技术或想进入该领域的初学者,对深度学习感兴趣的新手、在校学生和从业者阅读,也很适合作为培训机构和高校相关专业的教学用书。

作者简介  · · · · · ·

王国平,毕业于上海海洋大学,硕士,从业10余年,主要从事数据可视化、数据挖掘和大数据分析与研究等工作。精通数据挖掘技术与相关软件工具,包括Tableau、SPSS、PyTorch、Power Bl等,已出版《IBM SPSS Modeler数据与文本挖掘实战》《Microsoft Power Bl数据可视化与数据分析》《Tableau数据可视化从入门到精通》《零基础入门Python数据分析与机器学习》等图书。

目录  · · · · · ·

第 1 章 深度学习和PyTorch概述 1

  1. 走进深度学习的世界 1
    1. 深度学习的发展历史 1
    2. 深度学习框架PyTorch 3
    3. 深度学习的应用领域 4
  2. 搭建开发环境 5
    1. 安装Python 3.12 5
    2. 安装代码开发工具Jupyter Lab 9
    3. 安装PyTorch 2.2 10
  3. PyTorch的应用场景 14
  4. 上机练习题 14

第 2 章 PyTorch数学基础 17

  1. PyTorch中的函数 17
    1. 函数的基础知识 17
    2. PyTorch中的主要函数 20
  2. 微分基础 22
    1. 微分及其公式 22
    2. PyTorch自动微分 24
  3. 数理统计基础 29
    1. 数理统计及其指标 29
    2. PyTorch统计函数 34
  4. 矩阵基础 45
    1. 矩阵及其运算 45
    2. PyTorch矩阵运算 47
  5. 动手练习:拟合余弦函数曲线 54
  6. 上机练习题 58

第 3 章 数据预处理及常用工具 62

  1. NumPy 62
    1. 安装和导入NumPy 62
    2. NumPy的数据结构ndarray 63
    3. NumPy的基本使用 63
  2. Matplotlib 65
    1. 安装和导入Matplotlib 65
    2. Matplotlib的使用示例 66
  3. 数据清洗 70
    1. 数据清洗的作用 70
    2. 用Pandas进行数据清洗 71
  4. 特征工程 76
    1. 特征工程概述 76
    2. 使用Scikit-learn进行数据预处理 78
    3. 使用Pandas实现特征工程 81
  5. 深度学习解决问题的一般步骤 82
  6. 动手练习:每日最高温度预测 84
  7. 上机练习题 90

第 4 章 PyTorch基础知识 95

  1. 张量及其创建 95
    1. 张量及其数据类型 95
    2. 使用数组直接创建张量 96
    3. 使用概率分布创建张量 98
  2. 激活函数 99
    1. 激活函数及其必要性 99
    2. Sigmoid激活函数 100
    3. Tanh激活函数 101
    4. ReLU激活函数 102
    5. Leaky ReLU激活函数 103
    6. 其他类型的激活函数 104
  3. 损失函数 105
    1. 损失函数及其选取 106
    2. L1范数损失函数 106
    3. 均方误差损失函数 107
    4. 交叉熵损失函数 108
    5. 余弦相似度损失 109
    6. 其他损失函数 109
  4. 优化器 110
    1. 梯度及梯度下降算法 111
    2. 随机梯度下降算法 112
    3. 标准动量优化算法 112
    4. AdaGrad算法 113
    5. RMSProp算法 113
    6. Adam算法 114
  5. 动手练习:PyTorch优化器比较 114
  6. 上机练习题 119

第 5 章 PyTorch深度神经网络 124

  1. 神经网络概述 124
    1. 神经元模型 124
    2. 多层感知机 126
    3. 前馈神经网络 128
  2. 卷积神经网络 129
    1. 卷积神经网络的历史 129
    2. 卷积神经网络的结构 130
    3. 卷积神经网络的类型 131
  3. 循环神经网络 134
    1. 简单的循环神经网络 134
    2. 长短期记忆网络 136
    3. 门控循环单元 138
  4. 动手练习:股票成交量趋势预测 139
  5. 上机练习题 148

第 6 章 PyTorch数据建模 152

  1. 回归分析及案例 152
    1. 回归分析简介 152
    2. 回归分析建模 153
    3. 动手练习:住房价格回归预测 155
  2. 聚类分析及案例 160
    1. 聚类分析简介 160
    2. 聚类分析建模 160
    3. 动手练习:植物花卉特征聚类 162
  3. 主成分分析及案例 165
    1. 主成分分析简介 166
    2. 主成分分析建模 166
    3. 动手练习:地区竞争力指标降维 167
  4. 模型评估与调优 173
    1. 模型评估方法 173
    2. 模型调优方法 176
    3. 动手练习:PyTorch实现交叉验证 178
  5. 上机练习题 187

第 7 章 PyTorch图像建模 190

  1. 图像建模概述 190
    1. 图像分类技术 190
    2. 图像识别技术 191
    3. 图像分割技术 192
  2. 动手练习:创建图像自动分类器 193
    1. 加载数据集 193
    2. 搭建网络模型 194
    3. 训练网络模型 195
    4. 应用网络模型 196
  3. 动手练习:搭建图像自动识别模型 198
    1. 加载数据集 198
    2. 搭建与训练网络 200
    3. 预测图像数据 202
    4. 图像识别模型的判断 202
  4. 动手练习:搭建图像自动分割模型 204
    1. 加载数据集 205
    2. 搭建网络模型 206
    3. 训练网络模型 209
    4. 应用网络模型 210
  5. 上机练习题 212

第 8 章 PyTorch文本建模 220

  1. 自然语言处理的几个模型 220
    1. Word2Vec模型 220
    2. Seq2Seq模型 221
    3. Attention模型 222
  2. 动手练习:Word2Vec提取相似文本 223
    1. 加载数据集 223
    2. 搭建网络模型 227
    3. 训练网络模型 228
    4. 应用网络模型 230
  3. 动手练习:Seq2Seq实现机器翻译 231
    1. 加载数据集 231
    2. 搭建网络模型 237
    3. 训练网络模型 240
    4. 应用网络模型 242
  4. 动手练习:Attention模型实现文本自动分类 244
    1. 加载数据集 244
    2. 搭建网络模型 246
    3. 训练网络模型 247
    4. 应用网络模型 251
  5. 上机练习题 251

第 9 章 PyTorch音频建模 258

  1. 音频处理技术及应用 258
    1. 音频处理技术 258
    2. 音视频摘要技术及其应用 259
    3. 音频识别及应用 260
    4. 音频监控及应用 261
    5. 场景感知及应用 261
  2. 梅尔频率倒谱系数音频特征 262
    1. 梅尔频率倒谱系数简介及参数的提取过程 262
    2. 音频预处理 263
    3. 快速傅里叶变换 264
    4. 能量谱处理 264
    5. 离散余弦转换 265
  3. PyTorch音频建模技术 266
    1. 加载音频数据源 266
    2. 波形变换的类型 267
    3. 绘制波形频谱图 268
    4. 波形Mu-Law编码 270
    5. 变换前后波形的比较 272
  4. 动手练习:音频相似度分析 273
  5. 上机练习题 276

第 10 章 PyTorch模型可视化 278

  1. Visdom 278
    1. Visdom简介 278
    2. Visdom可视化操作 280
    3. 动手练习:识别手写数字 296
  2. TensorBoard 301
    1. TensorBoard简介 301
    2. TensorBoard基础操作 303
    3. 动手练习:可视化模型参数 312
  3. Pytorchviz 314
    1. Pytorchviz简介 314
    2. 动手练习:Pytorchviz建模可视化 314
  4. Netron 317
    1. Netron简介 317
    2. 动手练习:Netron建模可视化 317
  5. 上机练习题 321

第 11 章 从深度学习到大语言模型 323

  1. 大语言模型的原理 323
    1. 大语言模型简介 323
    2. Transformer架构 324
    3. 注意力机制 327
  2. 主要的大语言模型 331
    1. ChatGPT及其API调用 331
    2. 文心一言及其插件开发 334
    3. ChatGLM及其本地部署 338
  3. 模型预训练与微调 350
    1. 大模型预训练 350
    2. 大模型微调技术 353
  4. 上机练习题 361

参考文献 363

LangChain入门指南:构建高可复用、可扩展的LLM应用程序

内容简介  · · · · · ·

这本书专门为那些对自然语言处理技术感兴趣的读者提供了系统的LLM应用开发指南。全书分为11章,从LLM基础知识开始,通过LangChain这个开源框架为读者解读整个LLM应用开发流程。第1~2章概述LLM技术的发展背景和LangChain框架的设计理念。从第3章开始,分章深入介绍LangChain的6大模块,包括模型I/O、数据增强、链、记忆等,通过大量代码示例让读者了解其原理和用法。第9章通过构建PDF问答程序,帮助读者将之前学习的知识应用于实践。第10章则介绍集成,可拓宽LangChain的用途。第11章为初学者简要解析LLM的基础理论,如Transformer模型等。

《LangChain入门指南:构建高可复用、可扩展的LLM应用程序》以LangChain这个让人熟悉的框架为主线,引导读者一步一步掌握LLM应用开发流程,适合对大语言模型感兴趣的开发者、AI应用程序开发者阅读。

作者简介  · · · · · ·

李特丽,LangChain中文网联合创始人,优秀的软件工程师。曾翻译LangChain、OpenAi、Milvus等AI开发三件套的中文文档,帮助中国开发者快速上手AI开发。
康轶文,LangChain中文网创始人,2005年从个人站长做起,成为第一代SEO“大神”;2012年转型移动互联网营销,成为中国Apple Ads代理商,获得苹果千万美元授信;2022年转型月付制AI数字员工全托管服务,是一位经验丰富的数字员工和人工智能应用专家。

目录  · · · · · ·

  • 第1 章 LangChain:开启大语言模型时代的钥匙
    • 1.1 大语言模型概述
      • 1.1.1 什么是大语言模型
      • 1.1.2 大语言模型的发展
      • 1.1.3 大语言模型的应用场景
      • 1.1.4 大语言模型的基础知识
    • 1.2 LangChain 与大语言模型
  • 第2 章 LangChain 入门指南
    • 2.1 初识LangChain
      • 2.1.1 为什么需要LangChain
      • 2.1.2 LLM 应用开发的最后1 公里
      • 2.1.3 LangChain 的2 个关键词
      • 2.1.4 LangChain 的3 个场景
      • 2.1.5 LangChain 的6 大模块
    • 2.2 LangChain 的开发流程
      • 2.2.1 开发密钥指南
      • 2.2.2 编写一个取名程序
      • 2.2.3 创建你的第一个聊天机器人
    • 2.3 LangChain 表达式
  • 第3 章 模型I/O
    • 3.1 什么是模型I/O
    • 3.2 模型I/O 功能之模型包装器
      • 3.2.1 模型包装器分类
      • 3.2.2 LLM 模型包装器
      • 3.2.3 聊天模型包装器
    • 3.3 模型I/O 功能之提示词模板
      • 3.3.1 什么是提示词模板
      • 3.3.2 提示词模板的输入和输出
      • 3.3.3 使用提示词模板构造提示词
      • 3.3.4 少样本提示词模板
      • 3.3.5 多功能提示词模板
    • 3.4 模型I/O 功能之输出解析器
      • 3.4.1 输出解析器的功能
      • 3.4.2 输出解析器的使用
      • 3.4.3 Pydantic JSON 输出解析器
      • 3.4.4 结构化输出解析器
  • 第4 章 数据增强模块
    • 4.1 数据增强模块的相关概念
      • 4.1.1 LEDVR 工作流
      • 4.1.2 数据类型
    • 4.2 加载器
    • 4.3 嵌入模型包装器
      • 4.3.1 嵌入模型包装器的使用
      • 4.3.2 嵌入模型包装器的类型
    • 4.4 文档转换器
    • 4.5 向量存储库
      • 4.5.1 向量存储库的使用
      • 4.5.2 向量存储库的搜索方法
    • 4.6 检索器
      • 4.6.1 检索器的使用
      • 4.6.2 检索器的类型
  • 第5 章 链
    • 5.1 为什么叫链
      • 5.1.1 链的定义
      • 5.1.2 链的使用
      • 5.1.3 基础链类型
      • 5.1.4 工具链类型
    • 5.2 细说基础链
      • 5.2.1 LLM 链
      • 5.2.2 路由器链
      • 5.2.3 顺序链
    • 5.3 四大合并文档链
      • 5.3.1 Stuff 链
      • 5.3.2 Refine 链
      • 5.3.3 MapReduce 链
      • 5.3.4 重排链
    • 5.4 揭秘链的复杂性
      • 5.4.1 复杂链的“套娃”式设计
      • 5.4.2 LEDVR 工作流的终点:“上链”
  • 第6 章 记忆模块
    • 6.1 记忆模块概述
      • 6.1.1 记忆组件的定义
      • 6.1.2 记忆组件、链组件和Agent 组件的关系
      • 6.1.3 设置第一个记忆组件
      • 6.1.4 内置记忆组件
      • 6.1.5 自定义记忆组件
    • 6.2 记忆增强检索能力的实践
      • 6.2.1 获取外部数据
      • 6.2.2 加入记忆组件
    • 6.3 记忆增强Agent 能力的实践
    • 6.4 内置记忆组件的对比
      • 6.4.1 总结记忆组件
      • 6.4.2 会话记忆组件和会话窗口记忆组件的对比
      • 6.4.3 知识图谱记忆组件和实体记忆组件的比较
  • 第7 章 Agent 模块
    • 7.1 Agent 模块概述
      • 7.1.1 Agent 组件的定义
      • 7.1.2 Agent 组件的运行机制
      • 7.1.3 Agent 组件入门示例
      • 7.1.4 Agent 组件的类型
    • 7.2 Agent 组件的应用
      • 7.2.1 Agent 组件的多功能性
      • 7.2.2 自定义Agent 组件
      • 7.2.3 ReAct Agent 的实践
    • 7.3 工具组件和工具包组件
      • 7.3.1 工具组件的类型
      • 7.3.2 工具包组件的类型
    • 7.4 Agent 组件的功能增强
      • 7.4.1 Agent 组件的记忆功能增强
      • 7.4.2 Agent 组件的检索能力增强
  • 第8 章 回调处理器
    • 8.1 什么是回调处理器
      • 8.1.1 回调处理器的工作流程
      • 8.1.2 回调处理器的使用
      • 8.1.3 自定义链组件中的回调
    • 8.2 内置回调处理器
    • 8.3 自定义回调处理器
  • 第9 章 使用LangChain 构建应用程序
    • 9.1 PDF 问答程序
      • 9.1.1 程序流程
      • 9.1.2 处理PDF 文档
      • 9.1.3 创建问答链
    • 9.2 对话式表单
      • 9.2.1 OpenAI 函数的标记链
      • 9.2.2 标记链的使用
      • 9.2.3 创建提示词模板
      • 9.2.4 数据更新和检查
    • 9.3 使用LangChain 实现BabyAGI
      • 9.3.1 BabyAGI 介绍
      • 9.3.2 环境与工具
      • 9.3.3 向量存储
      • 9.3.4 构建任务链
      • 9.3.5 创建BabyAGI
      • 9.3.6 运行BabyAGI
  • 第10 章 集成
    • 10.1 集成的背景与LLM 集成
    • 10.2 LLM 集成指南
      • 10.2.1 Azure OpenAI 集成
      • 10.2.2 Hugging Face Hub 集成
    • 10.3 聊天模型集成指南
      • 10.3.1 Anthropic 聊天模型集成
      • 10.3.2 PaLM 2 聊天模型集成
      • 10.3.3 OpenAI 聊天模型集成
    • 10.4 向量库集成指南
      • 10.4.1 Chroma 集成
      • 10.4.2 Pinecone 集成
      • 10.4.3 Milvus 集成
    • 10.5 嵌入模型集成指南
      • 10.5.1 HuggingFaceEmbeddings 嵌入集成
      • 10.5.2 LlamaCppEmbeddings 嵌入集成
      • 10.5.3 Cohere 嵌入集成
    • 10.6 Agent toolkits 集成指南
      • 10.6.1 CSV Agent 的集成
      • 10.6.2 Pandas Dataframe Agent 的集成
      • 10.6.3 PowerBI Dataset Agent 的集成
    • 10.7 Retrievers 集成指南
      • 10.7.1 WikipediaRetriever 集成
      • 10.7.2 ArxivRetriever 集成
      • 10.7.3 Azure Cognitive Search 集成
  • 第11 章 LLM 应用开发必学知识
    • 11.1 LLM 的核心知识
      • 11.1.1 文本嵌入
      • 11.1.2 点积相似性和余弦相似性
      • 11.1.3 注意力机制
    • 11.2 Transformer 模型
    • 11.3 语义搜索
      • 11.3.1 语义搜索的工作原理
      • 11.3.2 RAG 的工作原理
    • 11.4 NLP 与机器学习基础
      • 11.4.1 LLM 应用开发中的传统机器学习方法
      • 11.4.2 NLP 文本预处理
      • 11.4.3 构建分类器
  • 附录A LangChain 框架中的主要类
  • 附录B OpenAI 平台和模型介绍
  • 附录C Claude 2 模型介绍
  • 附录D Cohere 模型介绍
  • 附录E PaLM 2 模型介绍
  • 附录F Pinecone 向量数据库介绍
  • 附录G Milvus 向量数据库介绍

走向火焰:帝国、战争与沙皇俄国的终结

★ 沃尔夫森历史奖得主、“最伟大的俄国史学家之一”利芬继《俄国与拿破仑的决战》之后再出力作

★ 首部俄国中心视角的一战史

★ 重新审视俄国参与一战的前因后果,以及一战对俄国革命以及20世纪历史的影响

【内容简介】

1904~1920年的国际形势瞬息万变,最具代表性的事件就是第一次世界大战的爆发。虽然沙皇身边一些思虑深远的人认识到俄国在德国显著军事优势下的脆弱性,伟大的俄国需要采取决定性行动的声音仍然占据了主导。俄国统治者们认为,1914年俄国加入战争的决定是在保卫国家未来,实际上它带来了诸多问题,并对20世纪的俄国和世界造成了深远的影响。《走向火焰》以俄国为核心研究对象,为第一次世界大战的起源、世界史视野下俄国革命发生原因的分析提供了一种新的俄国视角。

【本书获誉】

不仅是最伟大的俄国史学家之一,也是一名伟大的作家。

——安东尼·比弗,《独立报》

彻底改变我们对拿破仑为何失败的设想。

——安德鲁·罗伯茨,《每日电讯报》年度图书作者

精彩叙事的胜利……立刻成为经典作品,一项非凡、卓越、内容丰富的成就。

——西蒙·塞巴格·蒙蒂菲奥里

(他绘制了)宏大又细致的历史画卷……他无可避免地触及当代权力政治的神经点。

——《经济学人》

通过研究一批关于俄国如何走向战争的新证据,这部作品讲述了一批聪明又愚蠢的人如何毁掉自己的国家,并给自己带来灾难的故事。

——维克多·塞巴斯蒂安,《星期日泰晤士报》

Github | Docker | Project