含有"阿里云"标签的书籍

AI 原生应用架构白皮书

通用人工智能(AGI)已是确定的事情,我们正通往超级人工智能(ASI)。

过去三年,人工智能技术正以前所未有的速度渗透千行百业。国务院日前也印发了《关于深入实施“人工智能+”行动的意见》,从顶层设计的高度为人工智能技术落地提供了关键指引。这既展现出重塑生产力的巨大潜力,也孕育着重构生产关系的无限可能,为全球数字经济的智能化升级注入全新动能。 为持续突破 A性能边界,大模型厂商通过技术路径迭代不断拓展三个核心维度:在模型参数层面,从千亿参数,逐步演进至万亿级参数规模,实现对复杂知识的深度拟合;在训练数据层面,从数百 GB 文本,拓展至数百 TB 甚至 EB 级的多模态数据集,且数据质量与领域适配性持续提升;在算力支撑层面,核心训练算力需求呈现指数级增长,其规模每2年增长约10倍(即“黄氏定律”),为模型性能突破提供了有力保障。随着模型的推理能力和多模态能力显著提升,这些技术进步不仅为通用人工智能的实现减少了障碍,也为产业智能化升级提供了核心驱动力。

随着大模型厂商将训练与使用成本压缩至原有水平的几十分之,AI应用开始跨越效果与成本的平衡临界点。与此同时,A原生应用开发范式逐步形成雏形,从模型调用到场景适配的开发逻辑日渐清晰,为 AI应用的深度探索奠定了坚实基础。自此,AI正式进入规模化应用的爆发阶段。数据显示,过去16个月内全球对 AlAgent(智能体)的关注热度增长达1088%,AI办公助手、数字员工、智能客服等应用如雨后春笋般涌现。这其中,以 Agentic Al为核心的技术路径逐渐成为主流,其通过自主规划、任务拆解与动态交互能力,推动 AI从工具化应用向自主化服务演进,加速实现对数字世界的智能重塑与高效接管。

随着大模型与感知、控制技术的深度融合,具身智能正从实验室走向产业实践。从工厂的智能协作机器人到家庭服务终端,其发展依托于数字空间的智能能力向物理世界的延伸。Physical Al作为这一进程的前沿方向,正推动 AI从数据驱动的数字决策,逐步拓展至对实体环境的感知规划与执行,进而实现对物理世界的智能化赋能与协同。

可见,大模型已完成从技术突破到产业应用的关键跨越,AI正深度融入并重塑数字世界,并持续向物理世界延伸,最终推动人类生产生活方式的根本性变革。

在这一进程中,云计算以“云智一体”的形态,成为连接数字与物理世界的核心底座。极致弹性的算力资源、秒级伸缩的推理服务、跨“云-边-端”的统一调度框架,以及面向 AlDevOps 的全生命周期工具链,使得应用的训练、推理和运维像水电一样随取随用;云原生安全、成本治理与多租户隔离,为企业级 AI应用提供了可信赖的运行环境;开放的模型即服务(Maas)生态,让任何组织都能以最低门槛接入前沿智能。云不再只是简单的资源池化,而是与智能算法融为一体,成为 AI能力不可替代的技术平台,让智能在数字世界和物理世界之间自由流动,实现真正的“碳硅共生”。

Github | Docker | Project