含有"神经网络"标签的书籍

神经网络与机器学习(原书第3版)

神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络与机器学习》)。在本书中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。

本书不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题的应用。本书的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。

本版在前一版的基础上进行了广泛修订,提供了神经网络和机器学习这两个越来越重要的学科的最新分析。

本书特色:

1. 基于随机梯度下降的在线学习算法;小规模和大规模学习问题。

2. 核方法,包括支持向量机和表达定理。

3. 信息论学习模型,包括连接、独立分量分析(ICA)、一致独立分量分析和信息瓶颈。

4. 随机动态规划,包括逼近和神经动态规划。

5. 逐次状态估计算法,包括卡尔曼和粒子滤波器。

6. 利用逐次状态估计算法训练递归神经网络。

7. 富有洞察力的面向计算机的试验。

深度学习高手笔记 卷2:经典应用

当前,深度学习模型的规模越来越大,例如谷歌的 BERT模型、OpenAl的GPT系列模型等;深度学习算法在不断优化,例如在计算机视觉领域,图像分类、目标检测等任务应用深度学习算法后,准确率得到了显著提升;深度学习的应用领域在不断拓展,除了在自然语言处理、计算机视觉,语音识别等领域,深度学习在医疗、金融等领域也得到了广泛应用。因此,从事深度学习相关工作需要不断学习和巩固基础知识,提升业务实践能力,持续关注新技术和新方法,并不断拓展知识面。

本书包含深度学习的经典应用场景,从算法原理、公式推导、算法源码、实验结果等方面对各场景的算法进行分析和介绍,重点讨论深度学习算法在目标检测与分割、场景文字检测与识别等方向的发展历程以及各算法的优缺点,并分析各算法是如何针对先前算法的若干问题提出解决方案的。具体内容有:

***深度学习在目标检测与分割领域的前沿算法,包括双阶段检测、单阶段检测、无锚点检测、特征融合、损失函数、语义分割 6个方向的算法;

***深度学习在场景文字检测与识别领域的重要突破,包括场景文字检测、场景文字识别这两个阶段的算法;

***深度学习的其他应用领域的算法,包括图像翻译、图神经网络、二维结构识别、人像抠图图像预训练、多模态预训练 5个方向的算法;

***算法中的数学原理,包括双线性插值、匈牙利算法、Shift-and-Stitch、德劳内三角化、图像梯度、仿射变换矩阵等。

Github | Docker | Project