含有"数学"标签的书籍

数据结构与算法分析

本书是《Data Structures and Algorithm Analysis in C》一书第2版的简体中译本。原书曾被评为20世纪顶尖的30部计算机著作之一,作者Mark Allen Weiss在数据结构和算法分析方面卓有建树,他的数据结构和算法分析的著作尤其畅销,并受到广泛好评.已被世界500余所大学用作教材。

在本书中,作者更加精炼并强化了他对算法和数据结构方面创新的处理方法。通过C程序的实现,着重阐述了抽象数据类型的概念,并对算法的效率、性能和运行时间进行了分析。

全书特点如下:

●专用一章来讨论算法设计技巧,包括贪婪算法、分治算法、动态规划、随机化算法以及回溯算法

●介绍了当前流行的论题和新的数据结构,如斐波那契堆、斜堆、二项队列、跳跃表和伸展树

●安排一章专门讨论摊还分析,考查书中介绍的一些高级数据结构

●新开辟一章讨论高级数据结构以及它们的实现,其中包括红黑树、自顶向下伸展树。treap树、k-d树、配对堆以及其他相关内容

●合并了堆排序平均情况分析的一些新结果

本书是国外数据结构与算法分析方面的标准教材,介绍了数据结构(大量数据的组织方法)以及算法分析(算法运行时间的估算)。本书的编写目标是同时讲授好的程序设计和算法分析技巧,使读者可以开发出具有最高效率的程序。 本书可作为高级数据结构课程或研究生一年级算法分析课程的教材,使用本书需具有一些中级程序设计知识,还需要离散数学的一些背景知识。

算法霸权

数据科学家凯西•奥尼尔认为,我们应该警惕不断渗透和深入我们生活的数学模型——它们的存在,很有可能威胁到我们的社会结构。

我们生活在一个依赖“算法”的时代,它对我们生活的影响越来越大,我们去哪里上学,我是不是应该贷款买车,我们应该花多少钱来买健康保险,这些都不是由人来决定的,而是由大数据模型来决定的。从理论上来说,这一模型应该让社会更加公平,每一个人的衡量标准都是一样的,偏见是不存在的。

但是,正如凯西•奥尼尔书里所揭示的那样,事实并非如此。我们今天所使用的这些数学模型是不透明的、未经调节的、极富争议的,有的甚至还是错误的。最糟糕的是,数学模型和大数据算法加剧了偏见与不公。例如,一个贫困学生想申请贷款交付学费,但是银行大数据算法根据他居住地的邮政编码判断将钱带给他存在风险,因此,拒绝给他提供贷款。他因此失去了受教育的机会,而这个机会可能帮助他摆脱贫困。大数据算法做的常常只是锦上添花的事儿,有时甚至是落井下石。

通过个案追踪,凯西•奥尼尔揭示了大数据是如何影响我们将来的,它不仅影响着个人,也影响着整个社会。这些数据评价着我们的老师、学生,筛选着我们的简历,审核着我们的贷款资格,衡量着员工的工作态度,监视着投票者,监控着我们的健康。

凯西•奥尼尔呼吁数据模型的创造者们要对算法负责,政策的制定者及执行者们在使用这一威力极大的“武器”前应该更加慎重。最后,作者指出,大数据几乎掌控着我们的生活,我们应该增加对它的了解。这本书相当的重要,它让我们有能力去问一些十分尖锐的问题,帮助我们了解事实的真相,提出需要改变的地方,探索更好的生活。

【编辑推荐】

 案例丰富,内容兼具深度与话题性

未来20年,算法和大数据将席卷世界,接管我们的生活、社会和经济。我们生活中的很多方面都将落入自动化的数据分析之下。确保算法和大数据的公平性将是一项重大的任务,数据伦理的价值和意义将不断凸显出来。在作者看来,大数据犹如一个黑盒,规模、伤害和隐秘共存,她在书中引用了大量发生在美国当下的、基于大数据和算法的、改变个人生活的案例,并对影响这些城市生活经验的算法做了特别的观察和研究。作者认为,数据和算法的关系就像枪械和军火,数据没有价值观,是中立的,但来自人类行为的输入,难免隐含偏向,而算法创造的数据又对人类行为产生反作用,从而导致更多的不公。凯西在书中指出:算法模型一旦运转,执法行为就会增多,产生的新数据又会进一步证明加强执法的必要性。形象地说,就是哪里“前科”越多,哪里就越受算法“关照”,最终形成一个失真,甚至有害的回馈环路。这个观点也正是近来Facebook干预美国大选,国内很多专家学者热议“今日头条”推送模式的核心所在。

 权威作者的深刻洞见

本书作者是哈佛大学的数学博士,研究方向是数论和代数几何,毕业之后在麻省理工学院执教,并在互联网公司做过很长时间的数据科学家,如今致力于教育和媒体行业的数据知识普及工作,因此,这并不是一本传统意义上唱衰大数据的书,相反,作者希望让更多的人通过了解大数据、了解算法,反思模型,以及通过政府和相关机构的合理监管,不断改善各类设计评价体系,让更多的人受益,维护社会的公平与民主。

【英文版获奖情况】

《纽约时报》(New York Times)年度书籍

《波士顿环球报》年度最佳图书

《连线》杂志年度必读书目之一

《财富》年度最受欢迎的书之一

《柯克斯评论》年度最佳作品

芝加哥公共图书馆年度最佳图书

《自然》网站年度最佳图书

《麻省理工科技评论》年度最佳科技图书

Github | Docker | Project