本书通过96个案例,全面讲解了深度学习神经网络原理和TensorFlow的使用方法。全书共分为3篇,第1篇深度学习与TensorFlow基础,包括快速了解人工智能与TensorFlow、搭建开发环境、TensorFlow基本开发步骤、TensorFlow编程基础、识别图中模糊的手写数字等内容;第2篇深度学习基础——神经网络,介绍了神经网络的基础模型,包括单个神经元、多层神经网络、卷积神经网络、循环神经网络、自编码网络等内容;第3篇深度学习进阶,是对基础网络模型的灵活运用与自由组合,是对前面知识的综合及拔高,包括深度神经网络和对抗神经网络两章内容。本书特别适合TensorFlow深度学习的初学者和进阶读者阅读,也适合社会培训班和各大院校对深度学习有兴趣的学生阅读。
本站基于Calibre构建,感谢开源界的力量。所有资源搜集于互联网,如有侵权请邮件联系。
Github | Docker | Project
本书通过96个案例,全面讲解了深度学习神经网络原理和TensorFlow的使用方法。全书共分为3篇,第1篇深度学习与TensorFlow基础,包括快速了解人工智能与TensorFlow、搭建开发环境、TensorFlow基本开发步骤、TensorFlow编程基础、识别图中模糊的手写数字等内容;第2篇深度学习基础——神经网络,介绍了神经网络的基础模型,包括单个神经元、多层神经网络、卷积神经网络、循环神经网络、自编码网络等内容;第3篇深度学习进阶,是对基础网络模型的灵活运用与自由组合,是对前面知识的综合及拔高,包括深度神经网络和对抗神经网络两章内容。本书特别适合TensorFlow深度学习的初学者和进阶读者阅读,也适合社会培训班和各大院校对深度学习有兴趣的学生阅读。